Visual Localization Under Appearance Change: A Filtering Approach

Anh-Dzung Doan ¹ Yasir Latif ^{1 2} Tat-Jun Chin ^{1 2} Yu Liu ^{1 2} Shin Fang Ch'ng ^{1 2} Thanh-Toan Do ³ Ian Reid ^{1 2}

¹The University of Adelaide

²Australian Centre for Robotic Vision

³University of Liverpool

February 15, 2024

1 Visual localization under appearance change

Our proposed method

3 Experiments

Visual localization under appearance change

A major challenge in visual localization for autonomous driving is to be robust against appearance changes

Our solution:

Monte Carlo-based visual localization

Example:

Dynamic model

Let the 6 DoF camera pose be given by:

$$s_t = [r_t, \, \Omega_t]^T$$

where,

- r_t : 3D position at time t
- Ω_t : Euler orientation at time t
- *u_t*: noisy action at time *t*
- *z_t*: noisy measurement at time *t*
- $u_{1:t}$, $z_{1:t}$: noisy action and measurement up to time tWe represent $p(s_t|u_{1:t}, z_{1:t})$ with a set of N particles:

$$S_t = \{s_t^{[1]}, s_t^{[2]}, ..., s_t^{[N]}\}$$

$$\mathcal{W}_t = \{w_t^{[1]}, w_t^{[2]}, ..., w_t^{[N]}\}$$

Randomly sample noisy action $u_t^{[i]} = [v_t^{[i]}, \psi_t^{[i]}]^T$ according to Gaussian distribution:

$$egin{aligned} & m{v}_t^{[i]} &\sim \mathcal{N}(\mu_m{v}, m{\Sigma}_m{v}) \ \psi_t^{[i]} &\sim \mathcal{N}(\mu_\psi, m{\Sigma}_\psi) \end{aligned}$$

Our proposed motion model:

$$\boldsymbol{s}_{t}^{[i]} = \begin{bmatrix} \boldsymbol{r}_{t-1}^{[i]} + \boldsymbol{v}_{t}^{[i]} \\ \varphi^{-1} \left(\varphi(\psi_{t}^{[i]}) . \varphi(\Omega_{t-1}^{[i]}) \right) \end{bmatrix}$$

where, $\varphi(.)$ be a function that maps an Euler representation to Direction Cosine Matrix (DCM) and $\varphi^{-1}(.)$ is its inverse mapping.

Observation encoder

- Retrieve nearest images in database given a query
- Ose meanshift to select largest cluster
- ${f 0}$ Calculate mean of translation and rotation ightarrow noisy measurement z_t

For each particle, its weight is computed:

$$w_t^{[i]} = p\left(z_t | s_t^{[i]}\right) \propto e^{-\frac{1}{2}(z_t - s_t^{[i]})^T \sum_o^{-1}(z_t - s_t^{[i]})}$$

All particle weights are normalized:

$$\forall i, w_t^{[i]} = rac{w_t^{[i]}}{\sum_{j=1}^n w_t^{[j]}}$$

Particles are resampled using Stochastic universal sampling ¹

¹D. Whitley, "A genetic algorithm tutorial," Statistics and computing, 1994.

Experiments on synthetic dataset

Data collected from computer game Grand Theft Auto V (GTA V) using G2D $^{\rm 2}$ $^{\rm 3}$

We simulate there are 59 vehicles running in different routes, weathers and times of day. Coverage area is 3.36 $\rm km^2$

²A.-D. Doan, A. M. Jawaid, T.-T. Do, and T.-J. Chin, "G2D: from GTA to Data," arXiv preprint arXiv:1806.07381, pp. 1–9, 2018 ³https://github.com/dadung/G2D Testing sequences information:

Sequences	# images	Time &	Traversal
		Weather	distance
Test seq-1	1451	9:36 am, snowy	1393.03m
Test seq-2	360	10:41 pm, clear	359.74m
Test seq-3	1564	11:11 am, rainy	1566.93m
Test seq-4	805	6:26 pm, cloudy	806.56m
Test seq-5	1013	3:05 pm, overcast	1014.91m

Table: Statistics of the testing sequences in the synthetic dataset

Experiments on synthetic dataset

Dataset is published in: http://tiny.cc/jd73bz

Experiments on synthetic dataset

We compare against MapNet ⁴ and image retrieval ⁵

⁴S. Brahmbhatt, J. Gu, K. Kim, J. Hays, and J. Kautz, "Geometry-aware learning of maps for camera localization," in CVPR, 2018

⁵Our proposed observation encoder without motion model

Experiments on real dataset (Oxford RobotCar)

We compare against MapNet $^{6},$ MapNet with pose graph optimization (PGO) and PoseNet 7

⁶S. Brahmbhatt, J. Gu, K. Kim, J. Hays, and J. Kautz, "Geometry-aware learning of maps for camera localization," in CVPR, 2018

⁷A. Kendall, M. Grimes, and R. Cipolla, "PoseNet: A convolutional network for real-time 6-DoF camera relocalization," in CVPR, 2015

- A practical filtering approach to exploit the temporal smoothness of an image sequence
- An observation encoder robust against appearance change
- A synthetic dataset from GTA V (http://tiny.cc/jd73bz)
- Code will be available soon

