Scalable Place Recognition Under Appearance Change for Autonomous Driving

Anh-Dzung Doan ¹ Yasir Latif ^{1 2} Tat-Jun Chin ^{1 2} Yu Liu ^{1 2} Thanh-Toan Do ³ Ian Reid ^{1 2}

¹The University of Adelaide

²Australian Centre for Robotic Vision

³University of Liverpool

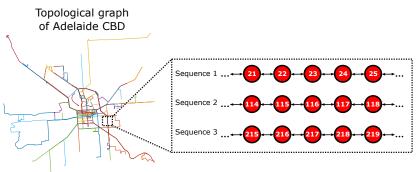
February 15, 2024

Introduction

A major challenge in place recognition for autonomous driving is to be robust against appearance changes

Graph representation

Given a dataset of M videos: $\mathcal{D} = \{\mathcal{V}_1, ..., \mathcal{V}_M\}$. Image indices are "unroll" to represent a map as a graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$:



A set of nodes $\mathcal{N} = \{1, ..., K\}$ are image indices/places.

Edge weights $w \in \mathcal{E}$ are transition probabilities between places k_1 and k_2 :

$$w(\langle k_1, k_2 \rangle) = P(k_2 \mid k_1) = P(k_1 \mid k_2)$$

Query video: $Q = \{Q_1, Q_2, \dots, Q_T\}$

HMM inference

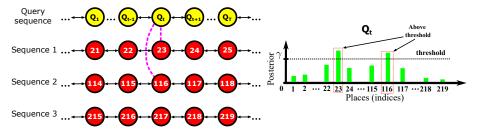
We denote transition matrix $\mathbf{E} \in \mathbb{R}^{K imes K}$, where, $\mathbf{E}(k_1,k_2) = P(s_t = k_2 | s_{t-1} = k_1)$

The observation model is a diagonal matrix $\mathbf{O}_t \in \mathbb{R}^{K \times K}$ obtained from image retrieval, where,

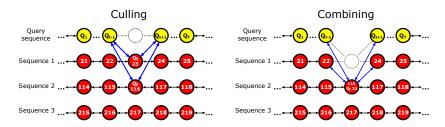
$$\mathbf{O}_t(k,k) = P(Q_t|s_t = k)$$

Belief \mathbf{p}_t is calculated using matrix computation

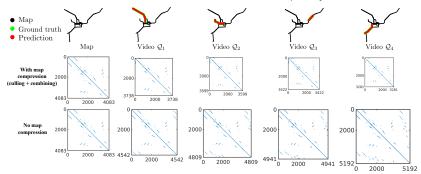
$$\mathbf{p}_t = \eta \mathbf{O}_t \mathbf{E}^T \mathbf{p}_{t-1}$$



Graph update & compression



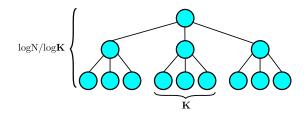
Result on Adelaide CBD dataset sourced from Mapillary



5/8

Q is appended to the dataset, i.e., $D = D \cup Q$, all vector $\psi(Q_t)$ is indexed to k-means tree, where,

- $\psi(.) \in \mathbb{R}^{D'}$: maps an image to a single high-dimensional vector
- N and T are $|\mathcal{D}|$ and $|\mathcal{Q}|$ respectively.



Assume the tree is balance, cost for adding Q is $O(TKD'(\log N/\log K + 1))$

Training & testing time

Dataset: Oxford RobotCar (8 different sequences along a same route)

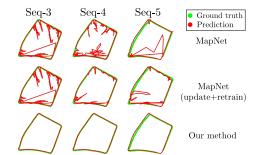
Training time					
Training sequences	VidLoc	MapNet	Our method		
Seq-1,2	14.1h	11.6h	98.9s		
Seq-3	-	6.2h	256.3s		
Seq-4	-	6.3h	232.3s		
Seq-5	-	6.8h	155.1s		
Seq-6	-	5.7h	176.5s		
Seq-7	-	6.0h	195.4s		

-			
1 1 2 2	in	ina	timo
110		IIIE	time

Sequences	Inference time (ms)		
Seq-3	4.03		
Seq-4	4.82		
Seq-5	4.87		
Seq-6	3.72		
Seq-7	3.78		
Seq-8	3.68		

Mean error

Methods	Seq-3	Seq-4	Seq-5
VidLoc	$38.86m, 9.34^{\circ}$	38.29m, 8.47°	36.05 m, 6.81°
MapNet		8.92m, 4.09°	17.19m, 5.72 °
MapNet (up- date+ retrain)	9.31m, 4.37°	8.71m, 3.31°	18.44m, 6.94°
Our method	6.59m , 3.28 °	6.01m , 3.11 °	15.88m , 5.91°



POSTER ID: #17