A Hybrid Quantum-Classical Algorithm for Robust Fitting

Anh-Dzung Doan¹ Michele Sasdelli¹ David Suter² Tat-Jun Chin¹

¹ The Australian Institute for Machine Learning, The University of Adelaide, South Australia

² Centre for AI\&ML, School of Science, Edith Cowan University, Western Australia

Robust fitting via consensus maximisation

Figure 1 : Feature point matches containing outliers (red lines).

Least square is sensitive to outliers

Figure 2 : Sensitivity of least squares to outliers.

Objective: make model fitting robust (insensitive) to outliers

Research gap in consensus maximisation

Theoretical results on classical computers [1]

[1] Tat-Jun Chin, Zhipeng Cai, and Frank Neumann. "Robust fitting in computer vision: Easy or hard?." ECCV 2018.

Maximise consensus as minimise vertex cover

Maximise consensus as minimise vertex cover

Hybrid quantum-classical robust fitting

Hybrid quantum-classical robust fitting algorithm

- 1. $A \leftarrow$ Sample new hyperedge
- 2. Decay penalty λ
- 3. Solve $Q_{\lambda}(A)$ using quantum annealing
- 4. If $\mathcal{I} \leftarrow \mathcal{V} \setminus C_z$ is a consensus set

5. If
$$\|\mathbf{z}\|_1 < \|\mathbf{z}_{\text{best}}\|_1$$
, then

$$\mathbf{z}_{\text{best}} \leftarrow \mathbf{z} \text{ and } \mathcal{I}_{\text{best}} \leftarrow \mathcal{I}$$

7. Repeat step 1

Hybrid quantum-classical robust fitting

$$\Rightarrow LP(A) = \min_{\mathbf{z} \in [0,1]^N} \|\mathbf{z}\|_1 \quad s.t \quad \mathbf{A}^T \mathbf{z} \ge \mathbf{1}_M,$$

Hybrid quantum-classical robust fitting algorithm

- 1. $A \leftarrow$ Sample new hyperedge
- 2. Decay penalty λ
- 3. Solve $Q_{\lambda}(A)$ using quantum annealing
- 4. If $\mathcal{I} \leftarrow \mathcal{V} \setminus C_z$ is a consensus set

5. If
$$\|\mathbf{z}\|_1 < \|\mathbf{z}_{\text{best}}\|_1$$
, then

6.
$$\mathbf{z}_{\text{best}} \leftarrow \mathbf{z} \text{ and } \mathcal{I}_{\text{best}} \leftarrow \mathcal{I}$$

7. Repeat step 1

Robust linear regression on synthetic data

Figure 2. Number of outliers $\|\mathbf{z}\|_1$ optimised by QPU and lower bound LP(A), plotted across the iterations of the proposed algorithm

Figure 3. Comparison between quantum annealing (on D-Wave Advantage) and simulated annealing (on classical computer)

Fundamental matrix estimation

- Solve QUBO with simulated annealing
- Alg. 1-F we run the algorithm with 300 iterations
- Alg. 1-E we terminate the algorithm as soon as a consensus set is found

Figure 4. Fundamental matrix estimation, where number of outliers $\|\mathbf{z}\|_1$ and lower bound LP(A) plotted across the iterations of Alg. 1-F

Method		RS [36]	LRS [21]	FLRS [47]	EP [45]	IBCO [15]	QRF [20]	Alg. 1-E	Alg. 1-F	Alg. 1-E providos
Castle	$ \mathcal{I} $ (Error bound)	74 (-)	74 (-)	74 (-)	70 (-)	76 (-)	73 (-)	72 (8.17)	76(1.41)	Alg. 1-P provides
N = 84	Time (s)	0.20	0.11	0.20	0.25	0.34	199.48	18.07	1998.87	<u>tighter error bound &</u>
Valbonne	$ \mathcal{I} $ (Error bound)	34 (-)	36 (-)	36 (-)	33 (-)	38 (-)	29 (-)	36 (6.00)	36 (4.00)	higher quality solution
N = 45	Time (s)	0.21	0.20	0.31	0.34	0.44	110.30	6.71	1915.82	
Zoom	$ \mathcal{I} $ (Error bound)	90 (-)	91 (-)	91 (-)	92 (-)	95 (-)	89 (-)	93 (9.91)	94 (3.64)	
N = 108	Time (s)	0.31	0.29	0.14	0.21	0.35	257.03	92.35	2109.13	
KITTI 104-108	$ \mathcal{I} $ (Error bound)	309 (-)	313 (-)	312 (-)	318 (-)	321 (-)	256 (-)	320 (9.91)	324 (2.30)	
N = 337	Time (s)	0.04	0.04	0.07	0.28	0.39	799.33	137.26	2408.04	
KITTI 198-201	$ \mathcal{I} $ (Error bound)	306 (-)	308 (-)	307 (-)	308 (-)	312 (-)	309 (-)	308 (10.00)	312 (1.89)	
N = 322	Time (s)	0.05	0.13	0.07	0.23	0.42	774.06	36.15	2350.39	
KITTI 738-742	$ \mathcal{I} $ (Error bound)	481 (-)	483 (-)	483 (-)	491 (-)	492 (-)	447 (-)	492 (5.88)	493 (1.39)	
N = 501	Time (s)	0.05	0.18	0.23	0.53	0.61	1160.12	22.46	2506.04	

Table 1. Fundamental matrix estimation. Only our algorithm amongst all methods returns error bounds

Fundamental matrix estimation

(a) Zoom

(b) KITTI 104-108

Figure 5. Qualitative results on fundamental matrix estimation

Multi-view triangulation

Figure 6. Multi-view triangulation, where number of outliers $\|\mathbf{z}\|_1$ and lower bound LP(A) plotted across the iterations of Alg. 1-F

Meth	RS [36]	LRS [21]	FLRS [47]	EP [45]	IBCO [15]	QRF [20]	Alg. 1-E	Alg. 1-F	
Nikolai point 134	$ \mathcal{I} $ (Error bound)	21 (-)	21 (-)	21 (-)	21 (-)	21 (-)	21 (-)	21 (1.00)	21 (0.00)
N = 24	Time (s)	0.24	0.32	0.30	0.34	0.36	158.39	6.12	159.28
Nikolai point 534	$ \mathcal{I} $ (Error bound)	16 (-)	16 (-)	16 (-)	15 (-)	17 (-)	17 (-)	16 (2.00)	16 (1.00)
N = 20	Time (s)	0.27	0.35	0.25	0.29	0.32	154.63	8.71	147.14
Linkoping point 1	$ \mathcal{I} $ (Error bound)	15 (-)	15 (-)	15 (-)	14 (-)	16 (-)	14 (-)	13 (5.75)	13 (5.75)
N = 25	Time (s)	0.25	0.30	0.34	0.38	0.47	175.83	20.05	153.79
Linkoping point 14	$ \mathcal{I} $ (Error bound)	36 (-)	36 (-)	36 (-)	35 (-)	37 (-)	32 (-)	37 (4.67)	37 (4.27)
N = 52	Time (s)	0.27	0.44	0.38	0.53	0.64	360.37	130.10	194.46
Tower point 3	$ \mathcal{I} $ (Error bound)	73 (-)	73 (-)	73 (-)	73 (-)	73 (-)	73 (-)	72 (3.00)	72 (1.00)
N = 79	Time (s)	0.28	0.64	0.32	0.36	0.43	555.27	27.26	177.43
Tower point 132	$ \mathcal{I} $ (Error bound)	79 (-)	79 (-)	79 (-)	79 (-)	81 (-)	81 (-)	79 (2.75)	81 (0.00)
N = 85	Time (s)	0.30	0.62	0.42	0.51	0.51	563.43	26.33	163.32

Table 2. Multi-view triangulation. Only our algorithm amongst all methods returns error bounds

Thanks for your attention

Homepage: https://sites.google.com/view/dzungdoan/home

Paper link: <u>https://arxiv.org/abs/2201.10110</u>

Source code: https://github.com/dadung/HQC-robust-fitting

Session: Poster 1.1, ID: 42a