Future Moon bases will likely be constructed using resources mined from the surface of the Moon. The difficulty of maintaining a human workforce on the Moon and communications lag with Earth means that mining will need to be conducted using collaborative robots with a high degree of autonomy. In this paper, we describe our solution for Phase 2 of the NASA Space Robotics Challenge, which provided a simulated lunar environment in which teams were tasked to develop software systems to achieve autonomous collaborative robots for mining on the Moon. Our 3rd place and innovation award winning solution shows how machine learning-enabled vision could alleviate major challenges posed by the lunar environment towards autonomous space mining, chiefly the lack of satellite positioning systems, hazardous terrain, and delicate robot interactions. A robust multi-robot coordinator was also developed to achieve long-term operation and effective collaboration between robots.